
COMPUTING
PRACTICES

The "Worm" Programs Early Experience
with a Distributed Computation

John F. Shoch and Jon A. Hupp
Xerox Palo Alto Research Center

I guess you all know about t apeworms . . . ?
Good. Well, what I turned loose in the net
yesterday was t h e . . , father and mother of
all tapeworms
My newest -my masterpiece-breeds by it-
s e l f
By now I don' t know exactly what there is
in the worm. More bits are being added
automatically as it works its way to places
I never dared guess existed
And-no , it can't be killed. It's indefinitely
self-perpetuating so long as the net exists.
Even if one segment of it is inactivated, a
counterpart of the missing portion will re-
main in store at some other station and the
worm will automatically subdivide and
send a duplicate head to collect the spare
groups and restore them to their proper
place.

- - J o h n Brunner, The Shockwave Rider
Ballantine, New York, 1975

1. Introduction

In The Shockwave Rider, J. Brun-
ner developed the notion of an om-
nipotent " tapeworm" program run-
ning loose through a network of
compute r s - - an idea which may
seem rather disturbing, but which is

An earlier version of this paper was prepared
for the Workshop on Fundamenta l Issues in
Distributed Computing, A C M / S I G O P S and
A C M / S I G P L A N , Pala Mesa Resort, Decem-
ber 1980.
Authors ' present address: J.F. Shoch and J.A.
Hupp, Xerox Corporation, Palo Alto Research
Center, 3333 Coyote Hill Road, Palo Alto, CA
94304.
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the AC M copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and /o r specific per-
mission.
© 1982 ACM 0001-0782/82/0300-0172 75¢.

172

SUMMARY: The "worm" programs were an experiment in
the development of distributed computations: programs that
span machine boundaries and also replicate themselves in
idle machines. A "worm" is composed of multiple "seg-
ments," each running on a different machine. The underlying
worm maintenance mechanisms are responsible for maintain-
ing the wormmfinding free machines when needed and rep-
licating the program for each additional segment. These tech-
niques were successfully used to support several real appli-
cations, ranging from a simple multimachine test program to
a more sophisticated real-time animation system harnessing
multiple machines.

also quite beyond our current capa-
bilities. The basic model, however,
remains a very provocative one: a
program or a computation that can
move from machine to machine, har-
nessing resources as needed, and rep-
licating itself when necessary.

In a similar vein, we once de-
scribed a computational model based
upon the classic science-fiction film,
The Blob: a program that started out
running in one machine, but as its
appetite for computing cycles grew,
it could reach out, find unused ma-
chines, and grow to encompass those
resources. In the middle of the night,
such a program could mobilize
hundreds of machines in one build-

C R Categories and Subject Descriptors: C.2.4
and C.2.5 [Computer Comnmnication Net-
works]: Distributed Systems and Local Net-
works.
General Terms: Design, Experimentation.
Additional Key Words and Phrases: multi-
machine programs, Ethernet local network,
Pup internetwork architecture.

Communicat ions
of
the ACM

ing; in the morning, as users re-
claimed their machines, the "blob"
would have to retreat in an orderly
manner, gathering up the interme-
diate results of its computation.
Holed up in one or two machines
during the day, the program could
emerge again later as resources be-
came available, again expanding the
computation. (This affinity for night-
time exploration led one researcher
to describe these as "vampire pro-
grams.")

These kinds of programs repre-
sent one of the most interesting and
challenging forms of what was once
called distributed computing. Unfor-
tunately, that particular phrase has
already been co-opted by those who
market fairly ordinary terminal sys-
tems; thus, we prefer to characterize
these as programs which span ma-
chine boundaries or distributed com-
putations.

March 1982
Volume 25
Number 3

In recent years, it has become
possible to pursue these ideas in
newly emerging, richer computing
environments: large numbers of
powerful computers, connected with
a local computer network and a full
architecture of internetwork proto-
cols, and supported by a diverse set
of specialized network servers.
Against this background, we have
undertaken the development and op-
eration of several real, multimachine
"worm" programs; this paper reports
on those efforts

In the following sections, we de-
scribe the model for the worm pro-
grams, how they can be controlled,
and how they were implemented. We
then briefly discuss five specific ap-
plications which have been built
upon these multimachine worms.

The pr imary focus of this effort
has been obtaining real experience
with these programs. Our work did
not start out specifically addressing
formal conceptual models, verifiable
control algorithms, or language fea-
tures for distributed computation,
but our experience provides some
interesting insights on these ques-
tions and helps to focus attention on
some fruitful areas for further re-
search.

2. Building a Worm
A worm is simply a computation

which lives on one or more machines
(see Figure 1). The programs on in-
dividual computers are described as
the segments of a worm; in the sim-
plest model each segment carries a
number indicating how many total
machines should be part of the over-
all worm. The segments in a worm
remain in communication with each
other; should one segment fail, the
remaining pieces must find another
free machine, initialize it, and add it
to the worm. As segments (machines)
join and then leave the computation,
the worm itself seems to move
through the network. It is important
to understand that the worm mech-
anism is used to gather and maintain
the segments of the worm, while ac-
tual user programs are then built on
top of this mechanism.

Initial construction of the worm

173

An Ethernet local network

\~S-segmentworm ~-] ~\ y ~

/ A I I / ~'-A 3-segment worm I
/ f --7 t i-- q / ;D

A ~se~m~2orm ~L-~ ~'7" " ~
An Alto computer

Fig. 1. Schematic of Several Multisegment Worm Programs.

programs was simplified by the use
of a rich but fairly homogeneous
computing environment at the Xerox
Palo Alto Research Center. This in-
cludes over 100 Alto computers [10],
each connected to an Ethernet local
network [4, 6]. In addition, there is a
diverse set of specialized network
servers, including file systems, print-
ers, boot-servers, name-lookup serv-
ers, and other utilities. The whole
system is held together by the Pup
architecture of internetwork proto-
cols [1].

Many of the machines remain
idle for lengthy periods, especially at
night, when they regularly run a
memory diagnostic. Instead of view-
ing this environment as 100 indepen-
dent machines connected to a net-
work, we thought of it as a 100-ele-
ment multiprocessor, in search of a
program to run. There is a fairly
straightforward set of steps involved
in building and running a worm with
this set of resources.

Communications
of
the ACM

2.1 General Issues in
Constructing a Worm Program

Almost any program can be mod-
ified to incorporate the worm mech-
anisms; all of the examples described
below were written in BCPL for the
Alto. There is, however, one very
important consideration: since the
worm may arrive through the Eth-
ernet at a host with no disk mounted
in the drive, the program must not
try to access the disk. More impor-
tant, a user may have left a disk
spinning in an otherwise idle ma-
chine; writing on such a disk would
be viewed as a profoundly antisocial
act.

Running a worm depends upon
the cooperation of many different
machine users, who must have some
confidence in the judgment of those
writing programs which may enter
their machines. In our work with the
Alto, we have been able to assure
users that there is not even a disk
driver included within any of the

March 1982
Volume 25
Number 3

C O M P U T I N G

P R A C T I C E S

worm programs; thus, the risk to any
spinning disk is no worse than the
risk associated with leaving the disk
in place while the memory diagnostic
runs. We have yet to identify a single
case in which a worm program tried
to write on a local disk.

It is feasible, of course, for a pro-
gram to access secondary storage
available through the network, on
one of the file servers.

2 . 2 S t a r t i n g a W o r m

A worm program is generally or-
ganized with several components:
some initialization code to run when
it starts on the first machine; some
initialization when it starts on any

subsequent machine; the main pro-
gram. The initial program can be
started in a machine by any of the
standard methods, including loading
via the operating system or booting
from a network boot-server.

2 . 3 L o c a t i n g O t h e r I d l e

M a c h i n e s

T h e f i r s t t a s k o f a w o r m i s t o f i l l

out its full complement of segments;
to do that, it must find some number
of idle machines. To aid in this pro-
cess, a very simple protocol was de-
fined: a special packet format is used
to inquire if a host is free. If it is, the
idle host merely returns a positive
reply. These inquiries can be broad-
cast to all hosts or transmitted to
specific destinations. Since multiple
worms might be competing for the
same idle machines, we have tried to
reduce confusion by using a series of
specific probes addressed to individ-

ual machines• As mentioned above,
many of the Altos run a memory
diagnostic when otherwise unused;
this program responds positively
when asked if it is idle.

Various alternative schemes can
be used to determine which possible
host to probe next when looking for'
an additional segment• In practice,
we have employed a very simple pro-
cedure: a segment begins with its
own local host number and simply
works its way up through the address
space. Figure 2, an Ethernet source-
destination traffic matrix (similar to
the one in [8]), illustrates the use of
this procedure. The migrating worm
shows up amid the other network
traffic with a "staircase" effect. A
segment sends packets to successive
hosts until finding one which is idle;
at that point the program is copied
to the new segment, and this host
begins probing for the next segment.

S o u r c e h o s t n u m b e r (o c t a l)

400 - -

360 --

340 --

320 -

300 --

260 - -

240 - -

220 - -

200 - -

160 - -

140 - -

120 --

1 O0 -

60 --

40 --

20

0 --

1=1
; - ; , . - -

: .

; ' 1 " . -

r '

F
r

t
t
I - L . - -
I I

I . I , . •

L I

[i
i i

r
L

f * l . * •

I I

o 20
I

4O
I

6O

174

I I

: , : . ,

, ' - i - - •lP • i . - i i , • , - - • .

I

. . . . i . - . : i i . . i

' i t :, i I I
,: 0 ~: I I

• . .t ~ I : : - . ' . I I

i i i i I

; : i ; ' • i i i i , i .. •

' r. = . , . : - I 'l

' i: : ' { : - - i i , • ,. , ,

- , - I I
" " I:

; ; : ; . '

. : : ' . ~ . ~ r = . - ' i . ~ , - : • " . . : - : ." 1. ;_i
• 1 T ' - t I I

i: : l i . :~.... : ,
. :--" -I, -. 'I", • 4'-I"

• " I I I I

i '. , i i

, , i i
• : : • , I • • • I I
- - . • " 1 I

: I I

. i - ~ " : , - . "~ ' . ' - - " : - - - . , " i . . ~

I I I I I I I I I I I I I

100 120 140 160 200 220 240 260 300 320 340 360 400

D e s t i n a t i o n h o s t n u m b e r (o c t a l)

C o m m u n i c a t i o n s
o f

t he A C M

Fig• 2 . E t h e r n e t S o u r c e - D e s t i n a t i o n
T r a f f i c M a t r i x w i t h a " W o r m " R u n -
n i n g . (N o t e t h e " s t a i r c a s e " e f f e c t
a s e a c h s e g m e n t s e e k s t h e n e x t
o n e .)

M a r c h 1982
V o l u m e 25

N u m b e r 3

2.4 Booting an Idle Machine
An idle machine can be located

through the Ethernet, but there is
still no way in which an Alto can be
forced to restart through the net-
work. By design, it is not possible to
reach in and wrench away control
from a running program; instead, the
machine must willingly accept a re-
quest to restart, either by booting
from its local disk or through the
network.

After finding an idle machine, a
worm segment then asks it to go
through the standard network boot
procedure. In this case, however, the
specified source for the new program
is the worm segment itself. Thus, we
have this sequence:
(1) Existing segment asks if a host

is idle.
(2) The host answers that it is.
(3) The existing segment asks the

new host to boot through the
network, from the segment.

(4) The newcomer uses the stan-
dard Pup procedures for re-
questing a boot file [1].

(5) The file transfer protocol is
used to transfer the worm pro-
gram to the newcomer.

In general, the program sent to a
new segment is just a copy of the
program currently running in the
worm; this makes it easy to transfer
any dynamic state information into
new segments. But the new segment
first executes a piece of initialization
code, allowing it to reestablish any
important machine-dependent state
(for example, the number of the host
on which it is running).

2.5 Intra-Worm Communication-
The Need for MultidestinaUon
Addressing

All segments of the worm must
stay in communication, in order to
know when one of their members
has departed. In our experiments,
each segment had a full model of its
parent w o r m - - a list of all other seg-
ments. This is a classic situation in
which one host wants to send some
information to a specified collection
of hos ts - -what is known as multides-
tination addressing or multicasting
(also called group addressing) [2, 5].

175

Unfortunately, the experimental
Ethernet design does not directly
support any explicit form of multi-
casting. There are, however, several
alternatives available [6]:

(l) Pseudo-multicast 11): An
unused physical host number can be
set aside as a special logical group
address, and all participants in the
group set their host ID to this value.
This is a workable approach (used in
some existing programs), but does
require advance coordination. In ad-
dition, it consumes one host ID for
each worm.

(2) Brute force multicast: A
copy of the information is sent to
each of the group's other members.
This is one of the techniques which
was used with the worms: each seg-
ment periodically sends its status to
all other segments.

The latter approch does require
sending n*(n - 1) packets for each
update; other techniques reduce the
total number of packets which must
be sent. Many of the worms, how-
ever, were actually quite small, re-
quiring ordy three or four machines
to ensure that they would not die
when one machine was lost. In these
cases, the explicit multicast was very
satisfactory. When an application
needs a substantial number of ma-
chines, they can be obtained with
one large worm or with a set of co-
operating smaller worms.

This state information being ex-
changed is used by each indepen-
dent segment to run an algorithm
similar to the one for updating rout-
ing tables in store-and-forward
packet-switched networks and inter-
networks: if a host is not heard from
after some period of time, it is pre-
sumed dead and eliminated from the
table. The remaining segments then
cooperate to give one machine re-
sponsibility for finding a new seg-
ment, and the process continues.

2.6 Releasing a Machine
When a segment of a worm is

finished with a machine, it needs to
return that machine to an idle state.
This is very straightforward: the seg-
ment invokes the standard network

Communicat ions
o f
the AC M

boot procedure to reload the memory
diagnostic program, that test is re-
sumed, and the machine is again
available as an idle machine for later
reuse.

This approach does result in
some unfortunate behavior should a
machine crash, either while running
the segment or while trying to reboot.
With no program running, the ma-
chine cannot access the network and,
as we saw, there is no way to reach
in from the net to restart it. The
result is a stopped machine, inacces-
sible to the worm. The machine is
still available, of course, to the first
user who walks up it it.

3. A Key Problem: Controlling a
Worm

No, Mr. Sullivan, we can't stop it! There 's
never been a worm with that tough a head or
that long a tail! It's building itself, don' t you
understand? Already it's passed a billion bits
and it's still growing. It's the exact inverse of
a phage- -whatever it takes in, it adds to itself
instead of w i p i n g . . . Yes, sir! I 'm quite aware
that a worm of that type is theoretically im-
possible! But the fact stands, he's done it; and
now it's so goddamn comprehensive that it
can't be killed. Not short of demolishing the
net!

- - J o h n Brunner, The Shockwave Rider

We have only briefly mentioned
the biggest problem associated with
worm management: controlling its
growth while maintaining stable be-
havior.

Early in our experiments, we en-
countered a rather puzzling situa-
tion. A small worm was left running
one night, just exercising the worm
control mechanism and using a small
number of machines. When we re-
turned the next morning, we found
dozens of machines dead, apparently
crashed. I f one restarted the regular
memory diagnostic, it would run
very briefly, then be seized by the
worm. The worm would quickly load
its program into this new segment;
the program would start to run and
promptly crash, leaving the worm
incomple te - -and still hungrily look-
ing for new segments.

We have speculated that a copy
of the program became corrupted at
some point in its migration, so that
the initialization code would not run

March 1982
Volume 25
Number 3

COMPUTING
PRACTICES

properly; this made it impossible for
the worm to enlist a new, healthy
segment. In any case, some number
of worm segments were hidden
away, desperately trying to replicate;
every machine they touched, how-
ever, would crash. Since the building
we worked in was quite large, there
was no hint of which machines were
still running; to complicate matters,
some machines available for running
worms were physically located in
rooms which happened to be locked
that morning so we had no way to
abort them. At this point, one begins
to imagine a scene straight out of
Brunner 's novel - -workers running
around the building, fruitlessly
trying to chase the worm and stop it
before it moves somewhere else.

Fortunately, the situation was not
really that grim. Based upon an ill-
formed but very real concern about
such an occurrence, we had included
an emergency escape within the
worm mechanism. Using an inde-
pendent control program, we were
able to inject a very special packet
into the network, whose sole job was
to tell every running worm to stop
no matter what else it was doing. All
worm behavior ceased. Unfortu-
nately, the embarassing results were
left for all to see: 100 dead machines
scattered around the building.

This anecdote highlights the need
for particular attention to the control
algorithm used to maintain the
worm. In general, this distributed al-
gorithm involves processing incom-
ing segment status reports and taking
actions based upon them. On one
hand, you may have a "high strung
worm": at the least disturbance or
with one lost packet, it may declare
a segment gone and seek a new one.
I f the old segment is still there, it
must later be expunged. Alterna-
tively, some control procedures were
too slow in responding to changes
and were constantly operating at less
than full strength. Some worms just
withered and died, unable to

176

promptly act to rebuild their re-
sources.

Even w o r s e , h o w e v e r , w e r e t he

unstable worms, which suddenly
seemed to grow out of control, like
the one described above. This mech-
anism is not yet fully understood, but
we have identified some circum-
stances that can make a worm grow
improperly. One factor is a classic
failure mode in computer commu-
nications systems: the half-up link (or
one-way path) where host A can
communicate with host B, but not
the other way around. When infor-
mation about the state of the worm
is being exchanged, this may result
in two segments having inconsistent
information. One host may think
everything is fine, while another in-
sists that a new segment is necessary
and goes off to find it.

Should a network be partitioned
for some time, a worm may also start
to grow. Consider a two-segment
worm, with the two segments run-
ning on hosts at opposite ends of an
Ethernet cable, which has a repeater
in the middle. I f someone temporar-
ily disconnects the repeater, each
segment will assume that the other
has died and seek a new partner.
Thus, one two-part worm becomes
two two-part worms. When the re-
peater is turned back on, the whole
system suddenly has too many hosts
committed to worm programs. Sim-
ilarly, a worm which spans different
networks may become partitioned if
the intermedite gateway goes down
for a while and then comes back up.

In general, the stability of the
worm control algorithms was im-
proved by exchanging more infor-
mation, and by using further checks
and error detection as the programs
evaluated the information they were
receiving. For example, if a segment
found that it continually had trouble
receiving status reports from other
segments, it would conclude that it
was the cause of the trouble and
thereupon self-destruct.

Furthermore, a special program
was developed to serve as a "worm
watcher" monitoring the local net-
work. I f a worm suddenly started
growing beyond certain limits, the

Communications
of
the ACM

worm watcher could automatically
take steps to restrict the size of the
worm or shut it down altogether. In
addition, the worm watcher main-
tained a running log recording
changes in the state of individual
segments. This information was in-
valuable in later analyzing what
might have gone wrong with a worm,
when, and why.

It should be evident from these
comments that the development of
distributed worm control algorithms
with low delay and stable behavior
is a challenging area. Our efforts to
understand the control procedures
paid off, however: after the initial
test period the worms ran flawlessly,
until they were deliberately stopped.
Some ran for weeks, and one was
allowed to run for over a month.

4. Applications Using the
Worms

In the previous sections we have
described the procedures for starting
and maintaining worms; here we
look at some real worm programs
and applications which have been
built.

4.1 The Existential Worm
The simplest worm is one which

runs a null p rogram-- i t s sole pur-
pose in life is to stay alive, even in
the face of lost machines. There is
no substantive application program
being run (as a slight embellishment,
though, a worm segment can display
a message on the machine where it
is running).

This simple worm was the first
one we constructed, and it was used
extensively as the test vehicle for
the underlying control mechanisms.
After the first segment was started, it
would reach out, fred additional free
machines, copy itself into them, and
then just rest. Users were always free
to reclaim their machines by booting
them; when that happened, the cus-
tomary worm procedure would find
and incorporate a new segment.

As a rule, though, this proce-
dure would only force the worm to
change machines at very infrequent
intervals. Thus, the program was
equipped with an independent self-
destruct timer: after a segment ran

March 1982
Volume 25
Number 3

on a machine for some random in-
terval, it would just allow itself to
expire, returning the machine to an
idle state. This dramatically in-
creased the segment death rate, and
exercised the worm recovery and
replication procedures.

4.2 The Billboard Worm

With the fundamental worm
mechanism well in hand, we tried to
enhance its impact. As we described,
the Existential worm could display a
small message; the "Billboard worm"
advanced this idea one step further,
distributing a full-size graphics im-
age to many different machines. Sev-
eral available graphics programs
used a standard representation for
an image--pictures either produced
from a program or read in with a
scanner. These images could then be
stored on a network file server and
read back through the network for
display on a user's machine.

Thus, the initial worm program
was modified so that when first
started, it could be asked to obtain
an image from one of the file servers.
From then on, the worm would
spread this image, displaying it on
screens throughout the building.
Two versions of the worm used dif-
ferent methods to obtain the image
in each new segment: the full image
could be included in the program as
it moved, or the new segment could
be instructed to read an image di-
rectly from one of the network serv-
ers.

With a mechanical scanner to
capture an image, the Billboard
worm was used to distribute a
"cartoon of the d a y " - - a greeting
for workers as they arrived at their
Altos.

4 . 3 T h e Alarm C l o c k W o r m

The two examples just described
requ i red no applicat ion-specif ic
communication among the segments
of a worm; with more confidence in
the system, we wanted to test this
capability, particularly with an ap-
plication that required high reliabil-
ity. As a motivating example we
chose the development of a com-
puter-based alarm clock which was
not tied to a particular machine. This

177

program would accept simple re-
quests through the network and sig-
nal a user at some subsequent time;
it was important that the service not
make a mistake if a single machine
should fail.

The alarm clock was built on top
of a multimachine worm. A separate
user program was written to make
contact with a segment of the worm
and set the time for a subsequent
wake-up. The signalling mechanism
from the worm-based alarm clock
was convoluted, but effective: the
worm could reach out through the
network to a server normally used
for out-going terminal connections
and then place a call to the user's
telephone!

This is an interesting application
because it needs to maintain in each
segment of the worm a copy of the
da tabase- - the list of wake-up calls
to be placed. The strategy was quite
simple: each segment was given the
current list when it first came up.
When a new request arrived, one
machine took responsibility for ac-
cepting the request and then propa-
gating it to the other segments. When
placing the call, one machine noti-
fied the others that it was about to
make the call, and once completed,
notified the others that they could
delete the entry. This was, however,
primarily a demonstration of a mul-
timachine application, and not an
attempt to fully explore the double-
commit protocols or other algorithms
that maintain the consistency of du-
plicate databases.

Also note that this was the first
application in which it was important
for a separate user program to be
able to find the worm, in order to
schedule a wake-up. In the absence
of an effective group-addressing
technique, we used two methods: the
user program could solicit a response
by broadcasting to a well-known
socket on all possible machines, or it
could monitor all traffic looking for
an appropriate status report from a
worm segment.

4.4 Mult imachine Animation
Using a Worm

So far, the examples described
have used a distributed worm, with

Communications
of
the ACM

no central control. One alternative
way to use a worm, however, is as a
robust set of machines supporting a
particular appl ica t ion--an applica-
tion that may itself be tied to a
designated machine. An example
which we have explored is the devel-
oment of a multimachine system for
real-time animation. In this case,
there is a single con t ro l n o d e or mas-

ter which is controlling the compu-
tation and playing back the anima-
tion; the multiple machines in the
worm are used in parallel to produce
successive frames in the sequence,
returning them to the control node
for display.

The master node initially uses the
worm mechanisms to acquire a set of
machines. In one approach, the mas-
ter first determines how many ma-
chines are desired and then recruits
them with one large worm. As we
just discussed, however, a single
large worm may be slow to get
started as it sequentially looks for
idle machines, and it may be un-
wieldy to maintain. Instead of using
one large worm to support the ani-
mation, the master spawns one worm
with instruction on how many other
worms to gather. This starting worm
launches some number of secondary
worms, which in turn acquire their
full complement of segments (in this
experiment, three segments per
worm). Thus, one can very rapidly
collect a set of machines responding
to the master; this collection of ma-
chines is still maintained by the in-
dividual worm procedures.

Each worm segment then be-
comes a "graphics machine" with a
pointer back to the master, and each
reports in with an " I ' m alive" mes-
sage after it is created; the master
itself is not part of any worm. The
master maintains the basic model of
the three-dimensional image and
controls the steps in the animation.
To actually produce each frame,
though, it only has to send the coor-
dinates for each object; the "worker"
machine then performs the hidden-
line elimination and half-tone shad-
ing, computing the finished frame.
With this approach, all of the worm
segments work in parallel, perform-
ing the computationally intensive

March 1982
Volume 25
Number 3

C O M P U T I N G
P R A C T I C E S

tasks. The master supplies descrip-
tions of the image to the segments
and later calls upon them to return
their result for display as the next
image.

The underlying worm mecha-
nism is used to maintain the collec-
tion of graphics workers; if a ma-
chine disappears, the worm will find
a new one and update the list held
by the control program. The worm
machines run a fairly simple pro-
gram, with no specific knowledge
about the animation itself. The sys-
tem was tested with several exam-
ples, including a walk through a cave
and a collection of bouncing and
rotating cubes.

4.5 A D iagnos t i c Worm for the
E the rne t

The combination of a central
control machine and a multipart
worm is also a useful way to run
distributed diagnostics on many ma-
chines. We knew, for example, that
Alto Ethernet interfaces showed
some pair-wise variation in the error
rates experienced when communi-
cating with certain other machines.
To fully test this, however, would
require running a test program in all
available mach ines - - a terribly awk-
ward task to start manually.

The worm was the obvious tool.
A control program was used to
spawn a three-segment worm, which
would then find all available ma-
chines and load them with a test
program; these machines would then
check in with the central controller
and prepare to run the specified mea-

surements. Tests were conducted
with as many as 80, 90, or even 120
machines.

In testing pair-wise error rates,
each machine had a list of all other
participants already loaded by the
worm and registered with the control
program. Each host would simply try
to exchange packets with each other
machine thought to be a part of the
test. At the end of the test each ma-
chine would report its results to the
control hos t - - thus indicating which
pairs seemed to have error-prone (or
broken) interfaces.

Figure 3 is the Ethernet source-
destination traffic matrix produced
during this kind of worm-based test.
To speed the process of gathering all
available machines, a three-segment
worm would be spawned, and these
segments could then work in parallel.
Host 217 was the control Alto, and

Source host number (octa l]

400

360

340

320

300

260

240

220

200

160

140

120

100

60

40

20

0

! ! . ! !

.1 ~..=
n I i I

• I i I
• * i l l |

. - ; - ~

i i i
i i l
| [l i ii

].! ,

| l i B

| 1 l

| | l

• | . m i

i I i i I
l I I I

I l i l ~ I

I I I I I l l | i l m l | i l l l n l l m l l iii
l i m L - i H n a l i s i
.

I I I ~ • 1 1 • I I i l l ~ 1 t i l l I O l l i b .
I i n I I l l I I I i l l i l G i l l I H I I I I
I i N n l i e i I I e l i H I R a i l i i n n i l l

t 2 " . " " ; --" ~'.
i i i i I i i i i i i q l l l i i i i % 1 1

i i i i ill i i i i i n i i n i m l i l l l ili
n i l • l , I l l I U l n l m l l l O m l . • i , . i o i l l
.

IIII III I I I I I B I l I I ~ I I B I III
r I I I F i l l • l l i l i i l i l ~ I i l I B ~ B I i l l

!!! !!! ! ! ! n! l ! l ! ! .q! !!!
I I I I I I I • I I l i B i l l l n • l I I l l I I I
o i i o i o P ~ +

I l l l i l l r l I l l l i m l i l i l l l i l I I I

I | | L r i l l • I l l l l i l l l l l l m l I I I
• m d l , , l , i l l , i n . l l l • I L I , l l , ~ i l ~ • H a l I P l l . . l l l . l ,

, . r , . • l ' " l ' l i b i l . l i l l i , l U l I l l

I % 1 P i l l • I I i l l i m l B i l l i U l I l l

IIII II II I I~11
m a i D * | i , i - a , "

:::_- :: ' . : • - - .

l l l ~ I I I I I I ~ I

• -, : : : • m i | L m !
• n i i i ~ *

m i m e * l i i i P ~ *

fii| il i l l , i ;
i i i i l l i i i i i i i ~ l l l

I I I I I I I I I r i l
I l l l I I I I I I e l

iiii ii i i i i . i i
Inln II l l l t l l
iiii ii i i i i i i
I I I I II t l I t e l

i i i i ii I1 I I I I
i . l , i . i * i i r e , ,

n a i l I I I I I I I I
l u l l I I I I I I I I

l U l l n l l m I I | l i i l i l i l l l l l I I I n i l | II I l l l i l

1 7 8

I I I I
0 20 40 60

I I I I I I I I I I I I I
100 120 140 160 200 220 240 260 300 320 340 360 400

Dest inat ion hos t number (oc ta l]

C o m m u n i c a t i o n s

o f

t h e A C M

Fig. 3• E the rne t Source -Des t ina t i on
Traffic Mat r i x When Tes t ing Ether-
ne t Connec t i v i t y • (Tota l n u m b e r of
source -des t i na t i on pai rs = 11 ,396 .)

M a r c h 1 9 8 2

V o l u m e 2 5

N u m b e r 3

it found the three segments for its
worm on hosts between 0 and 20.
Those three segments then located
and initialized all of the other partic-
ipants. As described earlier, a simple
linear search through the host ad-
dress space is used by each segment
to identify idle machines. To keep
the multiple segments from initially
pinging the same hosts, the starting
point for each segment could be se-
lected at intervals in the address
space. Each segment does make a
complete cycle through the address
space, however, looking carefully for
any idle machines.

To avoid any unusual effects dur-
ing the course of the test itself, the
worm maintenance mechanism was
turned offduring this period. I f hosts
had died, the worm could later be
reenabled, in an effort to rebuild the
collection of hosts for a subsequent
test.

At the conclusion of the tests, all
of the machines are released and al-
lowed to return to their previous idle
state--generally running the mem-
ory diagnostic. These machines
would boot that diagnostic through
the network, from one of the network
boot file servers; 120 machines trying
to do this at once, however, can cause
severe problems. In particular, the
boot server becomes a scarce re-
source that may not be able to handle
all of the requests right away, and
the error recovery in this very simple
network-boot procedure is not fool-
proof. Thus, all of the participants in
the measurements coordinate their
departure at the end of a test: each
host waits for a quasi-random period
before actually attempting to reboot
from the network boot server.

5. Some History: Multimachine
Programs on the Arpanet

The worm programs, of course,
were not the first multimachine ex-
periments. Indeed, some of the worm
facilities were suggested by the
mechanisms used within the Arpanet
or demonstrations built on top of
that network:

(1) The Arpanet routing algo-
rithm itself is a large, multimachine
distributed computation, as the In-

179

terface Message Processors (IMPs)
continually exchange information
among themselves. The computa-
tions continue to run, adapting to the
loss or arrival of new IMPs. (Indeed,
this is probably one of the longest-
running distributed computations.)

(2) In a separate procedure, the
Arpanet IMPs can be individually
reloaded through the network, from
a neighboring IMP. Thus, the IMP
program migrates through the Ar-
panet, as needed.

(3) In late 1970, one of the ear-
liest multimachine applications using
the Arpanet took place, sharing re-
sources at both Harvard and MIT to
support an aircraft carrier landing
simulation. A PDP-10 at Harvard
was used to produce the basic simu-
lation program and 3-D graphics
data. This material was then shipped
to an MIT PDP-10, where the pro-
grams could be run using the Evans
& Sutherland display processor
available at MIT. Final 2-D images
produced there were shipped to a
PDP-1 at Harvard, for display on a
graphics terminal. (All of this was
done in the days before the regular
Network Control Program (NCP)
was running; one participant has re-
marked that "it was several years
before the NCPs were surmounted
and we were again able to conduct a
similar network graphics experi-
ment.")

(4) "McRoss" was a later mul-
timachine simulation built on top of
the NCP, spanning machine bound-
aries. This program simulated air
traffic control, with each host run-
ning one part of the simulated air
space. As planes moved in the sim-
ulation, they were handed from one
host to another.

(5) One of the first programs to
move by itself through the Arpanet
was the "Creeper," built by B.
Thomas of Bolt Beranek and New-
man (BBN). It was a demonstration
program under Tenex that would
start to print a file, but then stop,
find another Tenex, open a connec-
tion, pick itself up and transfer to the
other machine (along with its exter-

Communications
of
the ACM

nal state, files, etc.), and then start
running on the new machine. Thus,
this was a relocatable program, using
one machine at a time.

(6) The Creeper program led to
further work, including a version by
R. Tomlinson that not only moved
through the net, but also replicated
itself at times. To complement this
enhanced Creeper, the "Reaper"
program moved through the net,
trying to find copies of Creeper and
log them out.

(7) The idea of moving proc-
esses from Creeper was added to the
McRoss simulation to make "relo-
catable McRoss." Not only were
planes transferred among air spaces,
but entire air space simulators could
be moved from one machine to an-
other. Once on the new machine, the
simulator had to reestablish com-
munication with the other parts of
the simulation. During the move this
part of the simulator would be sus-
pended, but there was no loss of
simulator functionality.

This summary is probably not
complete or fully accurate, but it is
an impressive collection of distrib-
uted computations, produced within
or on top of the Arpanet. Much of
this work, however, was done in the
early 70s; one participant recently
commented, "It's hard for me to be-
lieve that this all happened seven
years ago." Since that time, we have
not witnessed the anticipated blos-
soming of many distributed applica-
tions using the long-haul capabilities
of the Arpanet.

6. Conclusions
We have the tools at hand to

experiment with distributed compu-
tations in their fullest form: dynam-
ically allocating resources and mov-
ing from machine to machine. Fur-
thermore, local networks supporting
relatively large numbers of hosts now
provide a rich environment for this
kind of experimentation. The basic
worm programs described here dem-
onstrate the ease with which these
mechanisms can be explored; they
also highlight many areas for further
research.

March 1982
Volume 25
Number 3

COMPUTING
PRACTICES

Acknowledgments
This work grew out of some early

efforts to control multimachine mea-
surements of Ethernet performance
[6, 7, 8]. E. Taft and D. Boggs pro-
duced much of the underlying soft-
ware that made all of these efforts
possible. In addition, J. Maleson im-
plemented most of the graphics soft-
ware needed for the multimachine
animation; his imagination helped
greatly to focus our effort on a very
real, useful, and impressive applica-
tion. When we first experimented
with multimachine migratory pro-
grams, it was S. Weyer who pointed
out the relevance of John Brunner's
novel describing the "tapeworm"
programs. (Readers interested in
both science fiction and multima-
chine programs might also wish to
read The Medusa Conspiracy by
Ethan I. Shedley and The Adoles-
cence of P-1 by Thomas J. Ryan.)
Finally, our thanks to the many
friends within the Arpanet commu-
nity who helped piece together our
brief review of Arpanet-related ex-
periments, and our apologies to any-
one whose work we overlooked.

References

I. Boggs, D.R., Shoch, J.F., Taft, E.A., and
Metcalfe, R.M. PUP: An internetwork archi-
tecture. IEEE Trans. Commun. 28, 4 (April
1980). Describes the Pup internetwork archi-
tecture, used to tie together over 1,200 ma-
chines on several dozen different networks.

2. Dalai, Y.K. Broadcast protocols in
packet switched computer networks. Tech.
Rep. 128, Stanford Digital Syst. Lab., Stan-
ford, Calif., April 1977. Discussion of alter-
native techniques for broadcast addressing.

3. Dalai, Y.K., and Printis, R.S. 48-bit In-
ternet and Ethernet host numbers (to be
published in the Proc. 7th Data Comm.
Symp., Oct. 1981). Describes the use of
broadcast and multicast addresses in an in-
ternet design, and how this influenced the
development of the Ethernet addressing
scheme.

4. Metcalfe, R.M., and Boggs, D.R. Ether-
net: Distributed packet switching for local
computer networks. Comm. ACM 19, 7 (July
1976), 395404. The original Ethernet paper,
describing the principles of operation and ex-
perience with the Experimental Ethernet.

5. Shoch, J.F. lnternetwork naming, ad-
dressing, and routing. Proc. 17th IEEE
Comp. Soc. Int. Conf. (Compcon Fall '78),
Washington, D.C., Sept. 1978.General dis-
cussion of addressing modes, including the
use of multicast addressing.

6. Shoch, J.F. Local Computer Networks.
McGraw-Hill, New York (in press). A survey
of alternative local networks and a detailed
description of the Ethernet local network.

7. Shoch, J.F., and Hupp, J.A. Performance
of an Ethernet local network-a preliminary
report. Local Area Comm. Network Symp.,
Boston, Mass., May 1979 (reprinted in the
Proc. 20th 1EEE Comp. Soc. Int. Conf.
(Compcon Spring '80), San Francisco, Calif.,
Feb. 1980). Description of the measured per-
formance of the Ethernet.

8. Shoch, J.F., and Hupp, J.A. Measured
performance of an Ethernet local network.
Comm. ACM 23, 12 (Dec. 1980), 711-721.
Detailed discussion of the measured per-
formance of the Ethernet, including several
source-destination traffic graphs similar to
the ones presented here.

9. Shoch, J.F., Dalai, Y.K., Crane, R.C.,
and Redell, D.D. Evolution of the Ethernet
local computer network. Xerox Tech. Rep.
OPD-T81-02, Palo Alto, Calif., Sept. 1981.
The basic paper on the revised and improved
Ethernet Specification, including compari-
sons with the original Experimental Ether-
net.

10. Thacker, C.P., McCreight, E.M., Lamp-
son, B.W., Sproull, R.F., and Boggs, D.R.
Alto: A personal computer. In Computer
Structures: Principles and Examples, 2nd edi-
tion, Siewiorek, Bell, and Newell, Eds.,
McGraw-Hill, New York, 1982, 549-572.
Describing the Alto computer--a high-per-
formance, single-user machine--which was
used for running the worm programs.

The attention of Computing Practices readers
is called to a letter on spelling checkers by
Raben in the ACM Forum, pp. 220-221.

180 Communications
of
the ACM

March 1982
Volume 25
Number 3

